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2 q-Deforming the Hopf Algebra U(sl2)

In this lecture we extend our discussion of Hopf algebras to include our first

q-deformed example. As is well known, deformations of a Lie algebra g, in the

category of Lie algebras, can exist only if the second cohomology group H2(g, g)

is non-zero. As a direct consequence of this fact, all semi-simple Lie algebras must

be rigid.

This caused some to guess that there could exist no non-trivial deformations of

U(sl2) in the category of Hopf algebras. Thus, when Uq(sl2) first appeared in the

early 1980’s, it came as quite a surprise.

We will adopt the same conventions here as outlined at the beginning of the first

lecture, with the additional assumption that q denotes a fixed complex number

such that, unless otherwise stated, q 6= −1, 0, 1.

2.1 The Hopf Algebra Uq(sl2)

Definition 2.1. We define Uq(sl2) to be C 〈E, F, K, K−1〉 /IUq(sl2), where IUq(sl2)

is the two-sided ideal generated by the elements

KK−1 − 1, K−1K − 1, KEK−1 − q2E, KFK−1 − q−2F, (1)

[E, F ] −
K − K−1

q − q−1
.

While it is not immediately clear how, or even if, this is a deformation of U(sl2),

we do have the following two familiar looking results. (The proof of each result is

a simple exercise in linear algebra and can be found in [1].)

Lemma 2.2 The following two sets are vector space bases for Uq(sl2):

{F lKmEn |m ∈ Z; l, n ∈ N0}, {ElKmF n |m ∈ Z; l, n ∈ N0},

which we call the PBW bases.
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Lemma 2.3 The quantum Casimir element

Cq := EF +
Kq−1 + K−1q

(q − q−1)2
= FE +

Kq + K−1q−1

(q − q−1)2

lies in the centre of Uq(sl2). If q is not a root of unity, then the centre of Uq(sl2)

is generated by Cq.

We should note that the requirement on q not to be a root of unity is a common

feature in many results about quantised enveloping algebras. In many ways, the

root of unity case and the non-root of unity cases can be quite distinct.

Now in addition to the PBW bases, and the quantum Caisimir, U(sl2) has the

following all-important additional structure:

Lemma 2.4 There exists a Hopf algebra structure on Uq(sl2) with comultiplication

∆, counit ε, and antipode S, uniquely determined by

∆(E) = 1 ⊗ E + E ⊗ K, ∆(F ) = K−1 ⊗ F + F ⊗ 1,

∆(K) = K ⊗ K, ∆(K−1) = K−1 ⊗ K−1,

ε(E) = ε(F ) = 0, ε(K) = ε(K−1) = 1.

S(E) = −EK−1, S(F ) = −KF, S(K) = K−1, S(K−1) = K.

Proof. Just as for the classical example of U(sl2), the proof amounts to showing

that the maps ∆, ε, and S, vanish on the generators of the ideal, and that they

satisfy the axioms of a Hopf algebra on the generators of the algebra. For example,

we have

(∆ ⊗ id) ◦ ∆(E) = (∆ ⊗ id)(1 ⊗ E + E ⊗ K)

= 1 ⊗ 1 ⊗ E + 1 ⊗ E ⊗ K + E ⊗ K ⊗ K,

and

(id ⊗ ∆) ◦ ∆(E) = (id ⊗ ∆)(1 ⊗ E + E ⊗ K)

= 1 ⊗ 1 ⊗ E + 1 ⊗ E ⊗ K + E ⊗ K ⊗ K.

Hence, coassociativity holds for the generator E. The other calculations are left

as an excercise. �
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2.2 The Classical (q = 1)-Limit of Uq(sl2)

It is now time to address the question of how Uq(sl2) q-deforms the classical Hopf

algebra U(sl2). The obvious problem with setting q = 1 is that Uq(sl2) is no longer

well-defined. To get around this problem we will need to consider the following re-

formulation of Uq(sl2): Define Ũq(sl2) to be the algebra C 〈E, F, K, K−1, G〉 /ĨUq(sl2),

where ĨUq(sl2) is the ideal generated by the elements (1), and the additional gener-

ators

[G, E] = E(qK + q−1K−1), [G, F ] = −(qK + q−1K−1)F,

[E, F ] = G, (q − q−1)G = K − K−1.

Lemma 2.5 We have an algebra isomorphism α : Ũq(sl2) → Uq(sl2), uniquely

determined by

α(E) = E, α(F ) = F, α(K) = K, α(G) =
(K − K−1)

q − q−1
.

With respect to the induced Hopf algebra structure on Ũq(sl2), we have

∆(G) = G ⊗ K + K−1 ⊗ G, ε(G) = 0, S(G) = −G.

Proof. The proof is another basic exercise in generators and relations, and as

such, we leave it to the reader. �

Now for q = 1, it is clear that Ũq(sl2) is well-defined. Indeed, in Ũ1(sl2), we have

that K2 = 1, and moreover that K is an element of the centre of the algebra. The

other relations reduce to

[E, F ] = G, [G, E] = 2EK, [G, F ] = −2FK.

Hence, we have the following result:

Lemma 2.6 There exists an isomorphism

β : Ũ1(sl2) → U(sl2) ⊗ (C[K]/
〈
K2 − 1

〉
),

uniquely defined by

β(E) = E ⊗ K, F → F ⊗ 1, G → H ⊗ K, K → 1 ⊗ K.

As a few basic checks will confirm, the quotient Ũ1(sl2)/ 〈K − 1〉 is still well-defined

as a Hopf algebra, and as such, it is isomorphic to the Hopf algebra U(sl2).
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